

Orbiting Carbon Observatory-3 OCO-3

Watching The Earth Breathe... Mapping CO2 From Space.

OCO-3 on the ISS: Development of a Science Utilization Plan

Thomas P Kurosu, Annmarie Eldering, Matthew W Bennett, Ralph R Basilio, and the OCO-3 Team

Robert R Nelson & Robert Rosenberg, JPL

Jet Propulsion Lab/California Institute of Technology

2019 ISS Research&Development Conference Atlanta, GA 2019

Successful OCO-3 Launch: 04 May 2019

Outline

- OCO-3 history a movie
- Mission goals and mission status
- What's new about OCO-3 and being on the International Space Station
- Using the pointing system to take snapshot area maps/observing plan
- First Light results
- Data release schedule

OCO-3 history – a movie

OCO-3 Science Overview

Unique Science Opportunities with OCO-3

Terrestrial Carbon Cycle

Process studies enabled by measurements at all sunlit hours, including SIF. ISS will contain complementary instrumentation.

Snapshot Maps

Enabled by enhanced target mode using pointing mirror assembly

Key Dates and Activities

- Successful launch 04 May 2019 on a Space-X Falcon-9
- JEM installation completed 10 May 2019; OCO-3 powered up; all systems nominal
- In-orbit checkout (IOC) currently ongoing, until early August
- After IOC, the first 90 days focused on calibration and preparing to release L1b (Oct/Nov 2019)
- Next 90 days we focus on L2 for release (Feb/Mar 2020)
- We will use the NASA Data Center (GES-DISC) to release some small, preliminary datasets throughout this time period

ISS External Payload

OCO-2 vs OCO-3 – What's Different About the ISS?

OCO-2 is in a sun synchronous orbit like most earth observing missions

- All measurements ~1330h local time; orbit tracks repeat every 233 orbits (or 16 days)
- Pointing achieved by movements of the spacecraft

OCO-3 on the International Space Station

- Precessing orbit means that local time of measurements is a little earlier each day; non-repeating orbits; day-by-day shift in latitudinal coverage (with sunlight/time of day changes)
- Pointing achieved with a 2-axis pointing system
- Can use pointing system for up to 100 locations per day (chosen to manage the planning process and with consideration of lifetime of pointing system)

OCO-3 is the spare flight instrument of OCO-2

- identical detector hardware; modifications to OCO-3 include a different aperture size to compensate for the lower ISS orbit, and the addition of internal and external context cameras as well as a polarizer
- individual ground footprints are comparable: 1.6x2.2 km², 13 km swath width

Sampling from the ISS is Changing Constantly

Time from local solar noon (hours)

From the ISS

- We observe from 52°N to 52°S
- At a wide range of times of day
- Both of these vary from day to day!!

Sampling over 10 days

Figure provided by Tommy Taylor, CSU

Progression of Sampling Across Hours of the Day and Latitude

Science Inputs to Mission Planning

Snapshot Maps and Targets:

- Calibration targets (Radiometric calibration at pseudo-invariant desert playas, e.g. Railroad Valley)
- XCO₂ validation targets
 (TCCON/COCCON network sites)
- Fossil fuel CO₂ emissions hotspots (cities and powerplants)
- Terrestrial ecology (SIF-GPP relation over the day, multiinstrument constraint on terrestrial biosphere models)
- Volcanoes (quantifying degassing => predicting eruptions?)

Selected High Emissions Intensity Locations for Sampling List

- initial list of SAMs, to be updated during the course of the mission
- special SAMs can be requested at oco3_sam_requests@jpl.nasa.gov
- target cloudy places more often to obtain sufficient coverage (using MODIS cloud climatologies)

Science Observation Planning Logic

OCO-3 Science Observation Planning is Automated

Simulation: One day of OCO-3 Observations

Nadir
Glint
City/Volcano/SIF
ISS track

OCO-3 Science Observation Planning is Automated

Simulation: Six days of OCO-3 Observations

Nadir
Glint
City/Volcano/SIF
ISS track

Snapshot Area Maps Cover 80x80 km²

rotation of segments depends on the approach angle of the ISS and forward/rearward viewing geometry orientation of coverage depends on the ascending/descending node of the ISS

Snapshot Area Maps – Options

"squeezed" coverage: consecutive segments have spatial overlap

"stretched" coverage: consecutive segments separated by spatial gaps

Annual Frequency of SAMs (2015 Simulation)

Dips

predominantly southern hemisphere observation. *i.e.*, northern hemisphere is in darkness

Paris Snapshot Area Maps Details (2015 Simulation)

- occasionally 2 observations per day
- · temporal gaps of up to 1 month
- cumulative ~100 observations/year

OCO-3 First Light Results: XCO₂

OCO-3 First Light Results: Solar-Induced Fluorescence

OCO-3 First Light Results: Target Observations

Data produced by OCO-3 SDOS, graphics by Robert Nelson, JPL © 2019 California Institute of Technology. U.S. Government sponsorship acknowledged.

OCO-3 First Light Results: Radiance Spectra

OCO-3 first-light spectra show a significantly smaller amount of bad&dead pixels compared to OCO-2

Data produced by OCO-3 SDOS, graphics by Robert Rosenberg, JPL © 2019 California Institute of Technology. U.S. Government sponsorship acknowledged.

OCO-3 Mission Timeline – What's Next?

- Complete In-Orbit Checkout (early August) and enter routine science observations
- Pass Post-Launch Assessment Review (9 August)

- **Release** Level-1 data products, e.g., radiances (Oct/Nov 2019)
- **Release** Level-2 data products, e.g., XCO₂, SIF (Feb/Mar 2020)
- Continue science observations and improve data products until end-of-mission (nominally 3 years, e.g., 2022)

web portal: oco3.jpl.nasa.gov

use portal for: mission updates, data availability, request special observation targets, ...

Summary

- OCO-3 measures and map carbon dioxide from space in great detail improving our understanding of the interaction between carbon and climate.
- OCO-3 demonstrates a new "snapshot" mode capable of mapping local differences in CO₂ from space for the first time.
- OCO-3 is the first instrument to measure Solar-Induced Fluorescence (an indicator of photosynthesis efficiency) in high definition from dawn to dusk from space.
- OCO-3 continues the remote sensing CO₂ record with data that can be used in combination with ongoing OCO-2 measurements.

